ROVATOK

FELADVÁNYOK

BETŰTÉSZTA

ASSZOGRAMMA

JÁTÉKOK

KVÍZJÁTÉK

FÓRUM

REGISZTRÁCIÓ

A mai nap képe

nap képe

Küldj be te is képet!
Képeslapküldés

Keresés az oldalon:

Friss fórum:
Szívből szóló versek (1220)
játékos javítás (1691)
A nap képe (4283)
Betűtészta (3186)
Heti kvíz (1258)
Feladványok (17673)
Játékok (1898)
Segítséget kérek, köszönöm (2525)
Tőlem Nektek (12500)
Találkozó (7042)
Helló Venczel Gyuri! (9)
Nyomasevics Bobacsek (1233)
csak úgy.. (4584)
Vicces szövegek (4060)
Ki mondta? (288)

 > Még több fórum

A hét kérdése:

Jelentkezz be a heti kérdéshez!

 > régebbi kérdések
 > kérdés beküldés

Legolvasottabbak:
IQ teszt
Egy angliai egyetem kutatásai
Varázsgömb
Hipnózis
Agyscanner

Megoldás beküldése

  Név:   

Tipp: Ha regisztrált felhasználóként küldöd be a megoldást, statisztikát olvashatsz a teljesített feladataidról 
  

Ajándékozás
2016-06-06 6:55
Matekos osztályban
Könnyű, beküldte: titok111*, szerkesztő: csibe08
Egy 30 fős osztályban leültettük a gyerekeket, illetve készítettünk 30 cetlit, minden cetlin egy-egy gyerek neve található. A neveket tartalmazó cetliket ezután betettük egy nem átlátszó kalapba, és mindenki húzott egy cetlit. Ezután mindenki megnézi, és aki véletlenül a sajátját húzta, az cserél a padtársával.

A csere addig zajlik, amíg végül már nem lesz a teremben olyan gyerek, akinél a saját nevét tartalmazó cetli van.

Két esetet vizsgálunk most meg:
- az első esetben ketten ülnek egy padban. Amennyiben bármelyik padban ülő is a saját nevét húzta, cserél a padtársával.
- a második esetben hárman ülnek egy padban. Amennyiben bármelyik padban ülő is a saját nevét húzta, úgy "jobbra forognak" a cetlik, azaz mindeni a jobb oldalán ülőnek adja oda a saját cetlijét, a jobb szélen ülő pedig a bal szélen ülőnek adja a sajátját.

Cserének azt a folyamatot tekintjük, amikor valaki kiadja a kezéből a saját cetlijét, azaz az első esetben egy padtársak között lévő cetliváltás során összesen 2 csere történik, a második esetben pedig 3.

Az egyik ilyen alkalommal pontosan öten húzták a saját nevüket.
1. Az első esetben legalább és legfeljebb hány cserére lehet szükség annak feloldására, hogy senkinél ne a saját neve legyen?

2) Mi a helyzet a második esetben?


Felhasználónév:

Jelszó:

Jelszóemlékeztető



Friss feladványok:
 Add össze 4.
 Játékos anagramma 63.
 Főszereplő számok
 Hangy(a)nalízis - ahol minden atom számít
 Nem gondolkodtam tisztán, mikor írtam
 Más szóval
 Téglalap területe

Hirdetés

© 2017 DigitalAge

impresszum  ::  médiaajánlat  ::  segítség  ::  ajánló  ::  kezdőlapnak  ::  kedvencekhez   RSS