ROVATOK

FELADVÁNYOK

BETŰTÉSZTA

ASSZOGRAMMA

JÁTÉKOK

KVÍZJÁTÉK

FÓRUM

REGISZTRÁCIÓ

A mai nap képe

nap képe

Küldj be te is képet!
Képeslapküldés

Keresés az oldalon:

Friss fórum:
Feladványok (17479)
Játékok (1299)
Ki mondta? (258)
asszogramma (1872)
Hónap feladványa (695)
A hét kérdése (2030)
Tőlem Nektek (12422)
Nyomasevics Bobacsek (1202)
Betűtészta (3050)
Szívből szóló versek (1166)
Elnökválasztás (6)
Érdekes, vicces, jó honlapok (857)
Jellemezd Magyarország helyzetét egy filmcímmel! (15)
Ezek is mi vagyunk (472)
Vicces szövegek (4053)

 > Még több fórum

A hét kérdése:

Jelentkezz be a heti kérdéshez!

 > régebbi kérdések
 > kérdés beküldés

Legolvasottabbak:
IQ teszt
Egy angliai egyetem kutatásai
Varázsgömb
Hipnózis
Agyscanner

A prímek történelme
2021-01-31 6:55
Vad és szeszélyes vidék
Közepes, beküldte: kadar*, szerkesztő: VenczelGy
A matematikusok évezredek óta kutatják a számok atomjainak, azaz a prímszámoknak a tulajdonságait, képzésük módjait. A vegyészeknek sikerült azonosítani a tudományuk alapösszetevőit, ugyanis Mengyelejev periódusos rendszere teljes leírást ad a kémiai elemekről, de ehhez hasonlóval a számok nem rendelkeznek. Bár az ókori görögök jól indultak és a matematikusok azóta is nagy eredményeket értek el, a prímszámtáblázat még sokmindenben rejtélyes. Találtak sok érdekes kifejezést, melyekkel prímszámokat lehet előállítani, de teljeskörűen egyik sem működik.

Meglepetést okozott például a következő kifejezés:

a^2-a+41 (a=1, 2, ..., 40),

ugyanis 40 db prímszámot ad eredményül, azaz mindegyik a-ra prím az értéke- a 41, 43, 47, 53, 61, 71, 83, 97, 113, 131, 151, 173, 197, 223, 251, 281, 313, 347, 383, 421, 461, 503, 547, 593, 641, 691, 743, 797, 853, 911, 971, 1033, 1097, 1163, 1231, 1301, 1373, 1447, 1523, 1601 prímeket állítja elő.

Általánosan ezt a kifejezést a^2-a+b (a=1, 2, ..., b-1) formában vizsgálták és a fentiek szerint b=41 esetén prímeket kaptak.

Tisztelegve a kutatószellem előtt, keressünk mi is ilyen b értékeket, melyekre ez a kifejezés csak prímeket állít elő. Segítségül és könnyítésül eláruljuk, hogy a (b kisebb 41) számok közt keresgéljünk. Aki 41-nél nagyobb b értéket találna, az méltán büszke lehet majd magára.
Tehát találjuk meg az összes 41-nél kisebb b pozitív egész számot, melyre az
a^2-a+b (a=1, 2, ..., b-1) kifejezés
b-1 darab prímet ad eredményül.

A beküldési határidő lejárt, a regisztrálatlanul beküldött új megoldásokat már nem értékeljük!

Új hozzászólás beküldése (már csak regisztráltan beküldött megoldást értékeljük)


A A prímek történelme című feladvány statisztikája:
A feladványt eddig 2890 felhasználó olvasta, és 76 megoldást küldtek be rá.
A feladványt 36 látogató fejtette meg helyesen.
Akik helyes megfejtést küldtek be (vastaggal aki határidőn belül):
Anikóka, Anita, AtomHangya, avensis, belladonna, bolnyi, csomi35, cviki57, futo, grisenyka, hata, horsa, keva, kkanya, kli, Kuala13, kuliver69, littlered, Mesti (vendég), mihtoth, mutterka, nklari, ocotillo, onix, padat, pasztoi_istvan, portugal, Profö, rizsesz, saja, szedit24, szmoni65, tappi, tark, titok111, Tucatka
Ajánld a feladványt másoknak:
Címzett neve: E-mail címe:


Ha be lennél jelentkezve, itt megnézhetnéd a beküldött megoldásokat


Felhasználónév:

Jelszó:

Jelszóemlékeztető



Friss feladványok:
 Periódusos szavak - kicsit másképp 2.
 Csak a kezeMet figyeld!
 Szakmai anagramma 52.
 Szétválogatás 2. (korrigálva)
 Mi a nevem? (2.)
 Tekercs
 Meg egy Y

Hirdetés

© 2017 DigitalAge

impresszum  ::  médiaajánlat  ::  segítség  ::  ajánló  ::  kezdőlapnak  ::  kedvencekhez   RSS